481

Pressure reducing valves made of stainless steel with threaded connections

→ Series 481

■ MATERIAL

■ SPECIFICATION

1/2" - 2"

Inlet pressure: up to 40 bar Outlet pressure: 0,5 to 15 bar depending on version

■ SUITABLE FOR

Warm water

■ EXAMPLES OF USE

For the protection of:

- domestic water supply systems
- commercial and industrial plants

against too high supply pressure.

Pressure reducers are used, if within a piping system despite of varying pressures on the inlet side a certain pressure must not be exceeded on the outlet side.

- potable water supply according to DIN 1988
- process water supply in industrial- and building technology
- snow-making equipment
- fire-fighting equipment and sprinkler systems
- shipbuilding industry and offshore plants
- secondary areas in the food-, pharmaceutical- and cosmeticsindustries.

■ APPROVALS

DIN-DVGW type examination

Type approval ACS

Type approval WRAS

TR ZU 032/2013 - TR ZU 010/2011

Requirements

DIN EN ISO 3822 DIN DVGW guidelines **DIN EN 1567** PED 2014/68/EU DIN 1988

Classification society

Germanischer Lloyd Lloyd's Register EMEA LR EMEA American Bureau of Shipping ABS Bureau Veritas BV Russian Maritime Register of Shipping RS

■ MATERIALS

Component	Material	DIN EN	ASME
Inlet body	Stainless steel	1.4408	CF8M
Outlet body	Stainless steel	1.4408	CF8M
Internal parts	Stainless steel	1.4408	CF8M
	Stainless steel	1.4404	316 L
Spring	Spring steel with anti-rust protection	1.1200	ASTM A228
Strainer	Stainless steel	1.4404	316 L

■ VALVE VERSION

High-quality, heat-resistant moulded elastomere, fabric-reinforced diaphragm. with diaphragm Pressure adjustment by means of non-rising spindle. m

Valve insert with balanced single seat valve completely made of stainless steel.

Complete valve insert SP/HP (order code: 481 Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Complete valve insert LP (order code: 481 LP Insert-DN..-seal) available as replacement part can be exchanged without removing the valve.

Built-in dirt trap made of stainless steel.

Mesh size:

DN 15 to DN 32 DN 40 and DN 50

0,60 mm 0,75 mm

■ MEDIUM

gaseous and liquid

for water and distilled water, neutral and non-sticking liquids, compressed air and neutral gases; optionally with FPM elastomere seals for non-neutral media i.e. oils, fuels, oil-laden compressed air etc.

■ TYPE OF LIFTING MECHANISM

0

GF

without lifting device

■ OUTLET PRESSURE RANGES

SP	Standard version	Inlet pressure: up to 40 bar	Outlet pressure: from 1 to 8 bar
HP	High-pressure version	Inlet pressure: up to 40 bar	Outlet pressure: from 5 to 15 bar
LP	Low-pressure version	Inlet pressure: up to 25 bar	Outlet pressure: from 0,5 to 2 bar

Fixed setting at a required outlet pressure against surcharge.

■ AVAILABLE NOMINAL DIAMETERS AND CONNECTION SIZES

Nominal diameter DN	15	20	25	32	40	50
Inlet	1/2" (15)	3/4" (20)	1" (25)	1 1/4" (32)	1 1/2" (40)	2" (50)
Outlet	1/2" (15)	3/4" (20)	1" (25)	1 1/4" (32)	1 1/2" (40)	2" (50)

■ TYPE OF CONNECTION INLET / OUTLET THREADED CONNECTIONS

BSP-Tm / BSP-Tm	Standard threaded connections	Male thread BSP-T / Male thread BSP-T	DIN EN 10226, ISO 7-1 / DIN EN 10226, ISO 7-1
f/f	Version with female thread available in sizes DN15, DN20 and	Female thread BSP-P / Female thread BSP-P DN25	DIN EN ISO 228-1 / DIN EN ISO 228-1

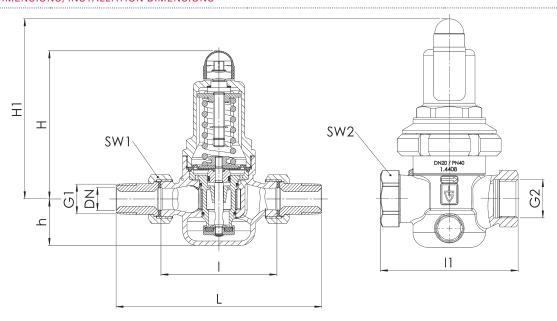
■ SEALS

EPDM	Ethylene propylene diene	Elastomere moulded diaphragm and seals approvals according to drinking water directive	-10°C to +95°C
Against surcharge			
FKM	Fluorocarbon	Elastomere moulded diaphragm and seals	−10°C to +95°C

■ OPTIONS

Against surcharge

Pressure gauges 36, 39 or 40 Chapter Accessories Chapter Accessories Pressure gauges 41, 42 or 43 made of stainless steel



■ NOMINAL DIAMETERS, CONNECTIONS, INSTALLATION DIMENSIONS

Series 481: Connection, installation dimensions, ranges of adjustment									
Connection	DN	15	20	25	32	40	50		
Inlet DIN EN 10226	G1	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"		
Outlet DIN EN 10226	G2	1/2"	3/4"	1"	1 1/4"	1 1/2"	2"		
Inlet pressure SP, HP up to	bar	40	40	40	40	40	40		
Inlet pressure LP up to	bar	25	25	25	25	25	25		
Outlet pressure	bar	0,5 - 2	0,5 - 2	0,5 - 2	0,5 - 2	0,5 - 2	0,5 - 2		
		1 - 8	1 - 8	1 - 8	1 - 8	1 - 8	1 - 8		
		5 - 15	5 - 15	5 - 15	5 - 15	5 - 15	5 - 15		
Installation dimensions	L	142	158	180	193	226	252		
in mm	1	80	90	100	105	130	140		
	11	85	95	105					
	H (H1)	102 (128¹)	102 (128¹)	130 (150¹)	130 (150¹)	165 (185¹)	165 (185¹)		
	h	33	33	45	45	70	70		
	SW1	30	37	46	52	65	75		
	SW2	28	35	43	48	57	68		
Weight	kg	1,2 (1,5¹)	1,3 (1,61)	2,3 (2,81)	2,5 (3,01)	5,2 (5,9 ¹)	5,7 (6,41)		
Coefficient of flow K _{vs}	m³/h	3	3,5	6,7	7,6	12,5	15		

¹for type 481mGFO-LP

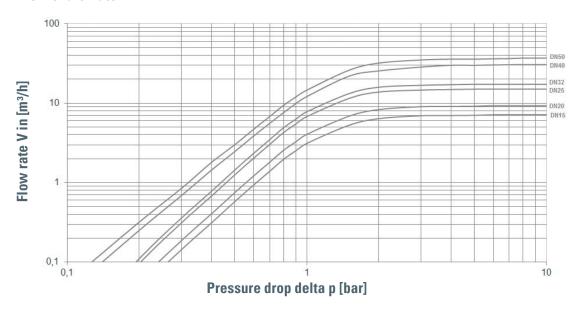
■ MAIN DIMENSIONS, INSTALLATION DIMENSIONS

■ INDIVIDUAL SELECTION / VALVE CONFIGURATION

Series Valve Medium version	Valve		Lifting device	Outlet	Outlet Nominal	Connection type		Connection size		Seal	Options	Optional:	Quan- tity
		иотос ро	p	DN	Inlet	Outlet	Inlet	Outlet			setting	,	
481	m	GF	0	SP	25	BSP-T m	BSP-T m	25	25	EPDM	Pressure Gauge 41		5
481	m	GF	0	SP	15	f	f	15	15	EPDM			4
481	m	GF	0										
481	m	GF	0										

In this table you can configure a valve according to your individual requirements (similar to the *example* shown, which should be deleted before you enter your own data). Please complete the table by hand using the abbreviations in this datasheet and then fax it to: +49(0)7141.4889488 Please do not forget to add your personal data so that our sales team can contact you.

Name			
First Name			
Company			
Telephone			
E-Mail			



²The K_{ys} value was determined according to DIN EN 60534-2-3. Instructions on how to determine size and capacity are to be found under section 2.

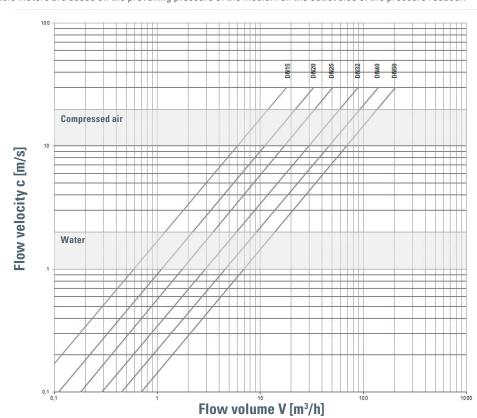
Series 481:

Dimensioning by pressure loss on the outlet pressure side

Flow chart water

Dimensioning by flow velocity

For Liquids


With \hat{N} help of the chart you can determine the nominal diameter (DN) for a given flow volume V (m^3/h). According to DVGW-guidelines (DIN 1988) a flow velocity of 2 m/s in domestic water supply systems should not be exceeded.

For compressed air and other gaseous media:

The usual flow velocity for compressed air is 10 - 20 m/s. For gaseous media the flow volume V should always be shown in actual cubic meters/hour. If the flow volume is given in standard cubic meters, these should be converted into actual cubic meters before using the diagram.

$$V\left(m^{3}/h\right) = \frac{V_{\text{Norm.}}\left(Nm^{3}/h\right)}{p_{\text{absolut.}}\left(bar\right)} = \frac{V_{\text{Norm.}}}{p_{0}+1}$$

Actual cubic meters are based on the prevailing pressure of the medium on the outlet side of the pressure reducer.

